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Abstract: Commodity crops, such as wheat and maize, are extremely dependent on chemical fertiliz-
ers, a practice contributing greatly to the increase in the contaminants in soil and water. Promising
solutions are biofertilizers, i.e., microbial biostimulants that when supplemented with soil stimulate
plant growth and production. Moreover, the biofertilizers can be fortified when (i) provided as
multifunctional consortia and (ii) combined with biochar with a high cargo capacity. The aim of this
work was to determine the molecular effects on the soil microbiome of different biofertilizers and de-
livery systems, highlight their physiological effects and merge the data with statistical analyses. The
measurements of the physiological parameters (i.e., shoot and root biomass), transcriptomic response
of genes involved in essential pathways, and characterization of the rhizosphere population were
analyzed. The results demonstrated that wheat and maize supplemented with different combinations
of selected microbial consortia and biochar have a positive effect on plant growth in terms of shoot
and root biomass; the treatments also had a beneficial influence on the biodiversity of the indigenous
rhizo-microbial community, reinforcing the connection between microbes and plants without further
spreading contaminants. There was also evidence at the transcriptional level of crosstalk between
microbiota and plants.

Keywords: biofertilizer; biochar; Zea mays; Triticum durum; gene expression; rhizospheric microbes;
soil pollution

1. Introduction

An increasing world population is challenging current agricultural production to
ensure a steady food supply, a problem that is worsened by the striking losses of arable
land and crop yields [1,2]. Wheat (T. durum and T. aestivum), the most important staple crop
in the world, and maize (Zea mays L.) contribute to ~12.4% of the world’s food demand (3%
of all cereals) and rank first in production volume worldwide (1.135 million tons) [3]. Their
cultivation has a strong impact on the use of chemical fertilizers; in 2019, 26 and 27.26 Gt
of fertilizers were used for wheat and maize, respectively (https://www.statista.com/
accessed on 12 June 2022). In the future, enhancing their cultivation will be a global
challenge [4] that requires the implementation of “sustainable agriculture” strategies,
which have been strengthened over time by both the UN (United Nations) and FAO (Food
and Agriculture Organization) and reiterated within the 17 Sustainable Development Goals
of the 2030 Agenda.
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One of the main challenges is managing plant fertilization since chemical fertilizers,
which are used at a high rate, contribute to both inorganic (metals, metalloids, and ra-
dionuclides) and organic contaminants (dichlorodiphenyltrichloroethane, polychlorinated
biphenyls, phthalates, dioxin). Organic fertilizers, on the other hand, are not completely
void of contaminants. Animal manure and sludge from municipal water treatment plants
can bring benefits to the soil in terms of organic matter but they are also a source of organic
and inorganic contaminants [5,6]. The production of inorganic fertilizer is energy intensive;
it has been estimated that 2% of the world’s energy production is devoted to the production
of inorganic nitrogen fertilizers, generating 465 million tons of CO2 [7]. Nanofertilizers
have several advantages: lower persistence in the soil, slower release, precision delivery of
active compounds, higher efficacy at the level of the targets, and the possibility of use in
biofortification [8]. They have also some drawbacks such as costs and subsidies, application
mode, heterogeneity of distribution, scaling up of technologies, legislative framework, and
acceptance by farmers [8,9] (Figure S1).

Biotechnologies can contribute to the development of useful practices for sustainable
agriculture [10], for example, the use of biostimulants, which have been defined as products
able to stimulate natural processes, when applied to plants or soil, increase the absorption
of nutrients, tolerance to biotic and abiotic stresses, and crop quality [3]. The types of
biostimulants are biofertilizers, bacteria, and/or fungi, defined as plant growth-promoting
microbes (PGPM), which establish a positive relationship with the plant by increasing the
bioavailability of many nutrients present in the soil and have a positive impact on plant
yield and health [6,11,12]. To improve the performance of biofertilizers, it is possible to
combine them with soil amendments, components that can positively change some parame-
ters of soil fertility (such as pH, organic material content, cation exchange capacity, nutrient
retention capacities) and can stimulate microbial growth and survival [3,13,14]. Biochar, an
amendment obtained by the pyrolysis or pyrogasification of renewable resources, some-
times considered waste, is a good candidate [15,16]. Moreover, its structural porosity
makes it ideal to provide a niche in which microorganisms can survive environmental
stress [14,17–20]. The use of biochar as a carrier of biofertilizers has been suggested [16,21]
but to evaluate its feasibility, it is important to study the biochar effect on soil and plants in
controlled growth conditions.

Moreover, the agricultural sector is strongly interested in making the cultivation of
commodities such as maize and wheat more sustainable because of their relevance to
human and animal nutrition, but this will need important changes in fertilization and
energy consumption to avoid the production of pollutants [22,23]. Previous studies have
evaluated the field application of mycorrhizae to maize [24] and wheat [25–27], obtaining
promising results, as their application increased the root absorption of micronutrients
from the soil [28–31]. Other studies have shown that the application of biofertilizers to
wheat cultivation is hampered by the variability in plant responses and environmental
conditions [32,33]. Therefore, any effective use of biostimulants in agriculture requires
a better understanding of (i) the interactions between plants and biostimulants, (ii) the
influence that these products have on the rhizosphere microbial communities, and (iii)
the factors that have the most influence on the crosstalk between plants and microbes to
promote only the beneficial ones.

This study investigated the effect of the combination of biochar (as a carrier), microbial
consortia, and/or arbuscular mycorrhizal fungi (AMF) on durum wheat and maize when
grown in greenhouses. The study involved (i) the evaluation of the effects of the different
treatments on plant growth and physiology; (ii) the 16S rDNA and ITS profiling of the soil
microbial communities to evaluate the main taxa and changes in the relative composition;
(iii) a systematic PCA analysis of all data obtained; and (iv) merging the molecular and
physiological data to produce a viable scenario for new plant fertilization. The study of
the systemic changes induced in leaf tissues through the gene expression analysis of the
presence of biochar and/or microorganisms demonstrated the plant and soil crosstalk in
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reacting to different environmental conditions (such as soil treatment) and plant age. A
systematic biological approach showed some of the plant molecules involved.

2. Results and Discussion
2.1. Char Has a High Cargo Capacity for Microbes

The use of char in agriculture and its positive effects have been extensively re-
viewed [16,34–37]. Moreover, its porous structure represents a perfect habitat for microbial
growth [17,38,39]. The high cargo capacity of char was utilized and demonstrated in this
work. The microbial consortia chosen for the experiments were the MC-B and MC-C [40,41],
previously tested on wheat T. aestivum [41] but not on wheat T. durum nor Z. mays. First,
it was evaluated whether the microbes could colonize the char surface and functionalize
it and the extent to which this was achieved. The results presented in Figure S2A show
that each gram of char was colonized on average by 108 to 1010 microbial cells, which
were visible with the Syto-9 staining of char (Figure S2B,C). This is important informa-
tion and shows that char at a working concentration was not toxic to the microbes and
allowed a high cargo capacity (absence of biochar phytotoxicity was previously tested
up to a concentration of 5% w/v; see biochar A4 in [16]). Alginate microbial encapsula-
tion, or the stabilization of the microbes on inert materials (i.e., zeolite, bentonite, perlite,
talc, or vermiculite), can also be employed to deliver microbes (see Table S1) [40,42]. The
method most commonly used to deliver biofertilizers is the coating of individual seeds
with a gluing chemical (i.e., methylcellulose) that was previously mixed with the desired
microbes [43,44]. It was estimated that on average, the viable number of cells present on
the coated seeds varied between 104 to 108 CFU/seed [45–47]. The influences exerted by
PGPMs should be more effective when higher counts of viable microbes are delivered near
the roots. Considering the average weight of maize and wheat seeds (respectively, 0.3 and
0.05 g) and the CFU/seedthat can be reached by seed coating, functionalized char allows
for the delivery of a higher number of microbial cells, on average in the range of 10 to 104

more CFU g−1, as previously reported [47,48]. This, of course, does not exclude that seed
coatings can be improved.

2.2. Effects of PGPM and Char on Plant Growth

The aims of this study were to compare the effects of the microbial delivery systems
and consortia (MC-B and MC-C) on plant growth. The measurements taken for plants, as
described in the Materials and Methods section, are reported in Table 1 for durum wheat
and Table 2 for maize; in particular, measurements of the length, fresh weight (FW), dry
weight (DW), and percentage of dry biomass of both roots and shoots, as well as the SPAD
index, were taken at 60 days after sowing (DAS).
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Table 1. Measurements of the physiological parameters analyzed for wheat shoots and roots under the different treatments. For each trait, the mean value and
standard deviation are reported.

Group Length (cm) Fresh Weight (FW) (g) Dry Weight (DW) (g) Dry Biomass % Chlorophyll Content (SPAD)

Treatments Roots Shoots Roots Shoots Roots Shoots Roots Shoots Leaves

1_Control
Control 61.2 ± 6.7 b 33.3 ± 2.6 b 0.7 ± 0.1 b 0.4 ± 0.1 b 0.1 ± 0.1 b 0.12 ± 0.02 b 11.4± 3.4 bc 28.1 ± 2.7 ab 25.8 ± 2.2 abc

Char 26.2 ± 2.3 c 32.0 ± 5.1 b 0.7 ± 0.3 b 0.6 ± 0.1 b 0.1 ± 0.0 b 0.16 ± 0.03 b 15.5± 6.1 bc 28.1 ± 6.2 ab 27.2 ± 2.3 abc

AMF 64.6 ± 9.0 ab 31.8 ± 4.3 b 0.7 ± 0.1 b 0.5 ± 0.1 b 0.1 ± 0.0 b 0.15 ± 0.04 b 15.7± 3.2 bc 26.7 ± 13.3 ab 27.7 ± 1.6 ab

Char_AMF 44.4 ± 3.4 c 30.0 ± 3.7 b 0.5 ± 0.1 b 0.4 ± 0.1 b 0.1 ± 0.0 b 0.31 ± 0.03 b 14.6± 3.2 bc 37.9 ± 10.8 a 24.1 ± 3.5 bc

2_Seed Coating
MC-B 53.6 ± 24.8 b 35.4 ± 4.7 b 0.7 ± 0.2 b 0.5 ± 0.1 b 0.1 ± 0.0 b 0.15 ± 0.01 b 12.5± 1.0 bc 27.2 ± 4.3 ab 23.6 ± 1.6 c

MC-C 35.6 ± 17.2 bc 27.8 ± 1.3 b 0.6 ± 0.1 b 0.4 ± 0.1 b 0.1 ± 0.0 b 0.14 ± 0.01 b 11.4± 5.1 bc 30.8 ± 7.6 ab 24.2 ± 2.1 bc

MC-B_ AMF 52.6 ± 8.1 ab 28.4 ± 5.7 b 0.4 ± 0.2 b 0.4 ± 0.1 b 0.1 ± 0.0 b 0.15 ± 0.01 b 18.5± 6.8 ab 31.4 ± 4.6 ab 22.2 ± 5.2 bc

MC-C_AMF 39.4 ± 3.3 c 31.6 ± 5.3 b 1.5 ± 0.5 a 0.6 ± 0.1 b 0.1 ± 0.1 b 0.16 ± 0.04 b 9.9± 10.6 c 27.2 ± 8.2 ab 26.2 ± 3.3 abc

3_Functionalized Char
Char_MC-B 49.2 ± 9.4 b 45.0 ± 7.3 a 1.6 ± 0.5 a 1.9 ± 0.1 a 0.2 ± 0.1 a 0.47 ± 0.07 a 15.2± 7.8 bc 24.1 ± 2.2 b 29.0 ± 4.1 a

Char_MC-C 48.6 ± 10.0 b 45.6 ± 3.3 a 2.0 ± 0.7 a 1.4 ± 0.4 a 0.3 ± 0.1 a 0.42 ± 0.02 a 14.7± 3.7 bc 30.6 ± 8.4 b 33.3 ± 8.7 a

Char_MC-B_AMF 54.8 ± 3.3 b 45.4 ± 11.5 a 1.6 ± 0.3 a 1.7 ± 0.1 a 0.3 ± 0.1 a 0.44 ± 0.02 a 17.3± 3.0 ab 28.4 ± 3.0 b 29.5 ± 1.5 a

Char_MC-C_AMF 74.8 ± 7.0 a 48.2 ± 3.3 a 0.6 ± 0.1 b 1.5 ± 0.3 a 0.2 ± 0.0 b 0.22 ± 0.06 a 26.4 ± 6.7 a 16.0 ± 6.1 c 27.8 ± 3.0 ab

Different letters in the same column correspond to statistically different values (p < 0.05 one-way ANOVA, post hoc Dunn’s test). Values in bold are significantly different. Measurements
were taken at 62 DAS.

Table 2. Measurements of the physiological parameters analyzed for maize shoots and roots when subjected to treatments as indicated. For each trait, the mean
value and standard deviation are reported.

Treatment
Length (cm) Fresh Weight (FW) (g) Dry Weight (DW) (g) Dry Biomass % Chlorophyll Content (SPAD)

Roots Shoots Roots Shoots Roots Shoots Roots Shoots Leaves

Control 51.7 ± 10.3 b 56.0 ± 8.0 c 3.1 ± 0.7 4.3 ± 1.7 c 0.3 ± 0.1 0.6 ± 0.2 c 10.3 ± 1.2 14.5 ± 1.4 ab 9.4 ± 2.4 d

Char 59.2 ± 16.6 b 68.0 ± 10.9 a 2.6 ± 0.5 5.0 ± 3.3 c 0.3 ± 0.6 0.6 ± 0.3 c 9.0 ± 1.0 12.0 ± 0.9 c 13.0 ± 2.6 c

AMF 70.8 ± 9.3 a 62.8 ± 13.8 b 3.1 ± 1.1 6.6 ± 2.9 abc 0.2 ± 0.1 1.1 ± 0.7 abc 8.7 ± 3.0 15.4 ± 2.7 ab 12.2 ± 1.8 c

Char_AMF 61.2 ± 10.5 b 68.3 ± 20.0 a 3.2 ± 1.7 5.3 ± 2.4 bc 0.2 ± 0.1 0.7 ± 0.3 bc 8.4 ± 1.9 13.0 ± 1.3 c 13.4 ± 3.4 bc

Char_MC-B 61.7 ± 13.0 b 64.5 ± 14.5 a 2.6 ± 0.4 4.8 ± 2.0 c 0.2 ± 0.1 0.6 ± 0.3 c 9.2 ± 0.7 14.3 ± 0.1 abc 12.5 ± 2.3 c

Char_MC-B_AMF 88.2 ± 21.5 a 62.2 ± 9.6 b 3.0 ± 0.9 12.5 ±6.4 a 0.2 ± 0.1 2.7 ± 0.1 a 8.1 ± 1.2 22.3 ± 8.7 a 17.5 ± 3.8 a

Char_MC-C 65.2 ± 7.0 b 65.2 ± 9.1 abc 3.0 ± 0.4 4.7 ± 1.8 c 0.3 ± 0.1 0.7 ± 0.3 c 9.1 ± 1.3 14.6 ± 2.2 ab 15.0 ± 3.7 ab

Char_MC-C_AMF 81.0 ± 10.3 a 59.7 ± 11.8 b 2.7 ± 1.0 8.9 ± 3.1 b 0.3 ± 0.1 1.5 ± 0.6 a 9.5 ± 1.1 16.1 ± 1.9 ab 14.5 ± 3.4 ab

Different letters in the same column correspond to statistically different values (p < 0.05 one-way ANOVA, post hoc Dunn’s test). Values in bold are significantly different. Measurements
were performed at 62 DAS.
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2.2.1. Wheat

The first comparison was of the microorganisms’ delivery systems, either seed coating
or char. The different conditions used for the wheat experiment were grouped into three
categories: 1 “Control”, 2 “Seed coating”, and 3 “ Functionalized Char”. The “Control”
group included control, char (0.1% w/w), AMF (1.4% w/w), and Char_AMF. The “Seed
coating” group included MC-B, MC-C, MC-B_AMF, and MC-C_AMF. The “Functionalized
Char” group included: Char_MC-B, Char_MC-C, Char_MC-B_AMF, and Char_MC-C_AMF.
The principal component analysis (PCA) (Figure 1A) showed that group 3 “Functionalized
char” clustered along the first principal component axis (P1), whereas treatments 1 “Control”
and 2 “Seed Coating” were widely distributed along the P2 axis.
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Figure 1. PCA analysis of the physiological growth data obtained for wheat (A) and maize (B) in
response to different treatments. (A) Wheat treatments were 1 “Control” group (Control, Char, AMF,
Char_AMF); 2 “Seed coating” group (MC-B, MC-C, MC-B_AMF, MC-C_AMF); 3 “Functionalized
Char” group (Char_MC-B, Char_MC-C, Char_MC-B_AMF, Char_MC-C_AMF). (B) Maize treat-
ments were “Control” group (Control, Char, AMF, Char_AMF); functionalized char group without
AMF (Char_MC-B, Char_MC-C), and functionalized char with AMF (Char_MC-B_AMF, Char_MC-
C_AMF). The colors and symbols are ordered according to the legend reported. The main groupings
are indicated in circles.

All traits analyzed (see Table 1), except for shoot dry biomass, were the main factors
in the P1 axis, accounting for 63.58% of the total variation. The shoot dry biomass was the
main factor in the second P2 axis, accounting for 16.42% of the total variation.

Statistical analysis of shoot-related traits, such as shoot length, FW, DW, and the SPAD
index, showed that the treatments of group 3 “Functionalized Char” with either MC-B or
MC-C and AMF had significantly increased (p < 0.05) values with respect to both the group
1 “Control” and group 2 “Seed coating” treatments (Table 1). Char when used as a cargo
system for MC-B and MC-C positively influenced these parameters. The group 3 treatments,
Char_MC-B_AMF and Char_MC-C_AMF, showed significant differences (p < 0.05) for
shoots FW and DW, and Char_MC-C_AMF also showed a significant difference for root
length. For root and shoot dry biomass, the highest values were observed in the treatments
for group 3 “Functionalized Char”, which were significantly different from both the control
and seed-coating groups (p < 0.05). The values obtained guided the selection of the
samples for the subsequent analysis of the 16S and ITS sequencing of microbiota from
rhizospheric soil and for the gene expression analysis in leaf tissues. The eight wheat
treatments selected were Control, Char, AMF, Char_AMF, MC-C, MC-C_AMF, Char_MC-C,
and Char_MC-C_AMF.
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2.2.2. Maize

Considering the wheat results, the maize experiments were specifically directed to
char as a delivery system. For this crop, the conditions tested were control, char, AMF,
Char_AMF, Char_MC-B, Char_MC-B_AMF, Char_MC-C, and Char_MC-C_AMF.

The data collected were analyzed and the results are shown in Table 2.
No significant differences emerged from the data regarding the root FW, DW, and dry

biomass. Instead, root length was the only trait that showed significant differences in the
AMF, Char_MC-C_AMF, and Char-MC-B_AMF treatments, where the plants had longer
roots than the control (p < 0.05). PCA analysis (Figure 1B) showed that the shoot and root
length and dry biomass, root DW, and shoot chlorophyll content measured with SPAD were
the main factors along the P1 axis, accounting for 54.96% of the total variation, whereas the
shoot FW and DW were the main factors along P2 axis, accounting for 19.53% of the total
variation. In particular, the treatment Char_MC-B_AMF determined a significant (p < 0.05)
positive effect with respect to root length, shoot FW, DW, SPAD index, and dry biomass
(Table 2). These results suggest a synergistic effect between the microorganisms and char,
which led to a higher biomass and higher photosynthetic activity compared to the other
treatments. Indeed, the analysis of the rhizospheric soil also showed that these treatments
(with microbes and char) were influencing the ecology of the soil microbiome (see below).

The application of biofertilizers directly to seeds promotes plant growth from an
early stage. The commercial requirements for an alternative to seed coating as a com-
petitive delivery system demand a tool that also meets the high safety standards [49].
Studies including greenhouse and field trials have been focused on this topic for the last
20 years [50]. Quantitative data previously reported for wheat showed that char function-
alization was more efficient than seed coating in boosting the biomass of both roots and
shoots. Indeed, seed coating with carriers is a complex process requiring suitable moisture,
temperatures, and nutrient availability to keep the bacteria alive over a sufficient period of
time [51]. Instead, the physiological parameters considered suggested that char ensures
optimal conditions for colonization by microorganisms as shown at the structural level
(Figure S2). The functionalization of char with biofertilizers has been recently applied to
other plants [44,52,53]. Moreover, the results obtained may be influenced by the properties
of the microorganisms in the consortia such as the biological nitrogen fixation, synthesis
of phytohormones (IAA, GA3, and cytokinin), and increased availability of micro- and
macronutrients (phosphorus and iron) [54]. All data reported were consistent with the
literature [2,31,53,55–57], that is, the presence of MC in combination with AMF determined
an increase in root development, nutrient uptake, and root and shoot biomass. The novelty
here is that the results were obtained using a new technology of functionalization and
delivery with biochar and in two “in lab”-designed microbial consortia [40], which were
not tested previously on wheat (T. durum) and maize (Z. mays).

2.3. Analysis of Rhizosphere Microbiota and Mycobiota

The results guided the selection of the wheat samples in which the rhizosphere bac-
terial and fungal communities were studied. Specifically, the samples chosen were those
that displayed a stronger positive response to the presence of the biostimulants than their
relative controls. Instead, all maize samples were considered.

2.3.1. Bacteria and Fungi in the Rhizosphere of Wheat

The most abundant bacterial phyla in all samples were Proteobacteria, accounting for
over 55% of the total sequences, followed by Bacteroidetes with ~11% and then Verrucomi-
crobia, Actinobacteria, Acidobacteria, TM7 (Saccharibacteria), and Gemmatimonadetes,
whose abundance ranged from 3 to 8% (Figure 2A). PCA was employed to generate a
global overview of the data (Figure 2C). The Proteobacteria population was the main
factor in the first principal component axis (P1), accounting for 69.6% of the total vari-
ation, whereas TM7 was the main factor in the second P2 axis. Proteobacteria include
important species such as Pseudomonas sp. and Burkholderia sp. [58–60] and Azospirillum
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sp. and Azotobacter sp., which are nitrogen-fixing bacteria, whereas TM7 are hydrocarbon
decomposers; however, so far, little is known about their characteristics as they have not yet
been successfully isolated and cultivated [61,62]. Figure 2C,D show that the MC-C_AMF
and Char_MC-C_AMF data were more similar. These results also show a similar com-
bined effect of MC-C and AMF on the rhizospheric soil population, independent of their
delivery method (see Materials and Methods Sections 3.2 and 3.3). For Proteobacteria, the
most represented classes were Alphaproteobacteria, Gammaproteobacteria, Saprospirae,
Actinobacteria, and Betaproteobacteria, together accounting for over 60% of the retrieved
sequences (Figure S3A).
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Figure 2. Phyla of rhizospheric bacterial and fungal communities in wheat soils untreated or treated
with different combinations of biofertilizers. (A) Relative abundance (based on OTUs) of the most
relevant bacterial phyla found in eight rhizospheric soils of wheat analyzed in duplicate (1–2); the
colors are ordered from left to right according to the legend reported at the bottom of the panel;
(B) PCA analysis of the eight selected bacterial communities in the different wheat soils analyzed.
(C) Relative abundance (based on OTUs) of the most relevant fungal phyla found in eight rhizospheric
soils of wheat analyzed in duplicate (1–2); the colors are ordered from left to right according to the
legend reported at the bottom of the panel. (D) PCA analysis of eight selected fungal communities in
the different wheat samples analyzed. Each symbol (circle) represents one replicate and the colors
follow the legend reported at the top of the panel.

Starting with the operational taxonomic units (OTUs), the Shannon diversity index
and the estimator of the richness of Chao-1 were calculated (Table S2). The Shannon index
increased in each of the treatments where the MCs were added and was at a minimum when
only char was supplied. The differences were not particularly relevant but were expected.
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Indeed, char addition has been reported to modify the soil microbial community although
its variable effects on soil depend on the soil type, char application rate, and char particle
size [63–65]. It was expected that the addition of char to soil would positively influence
the fungal population as fungi can better use the residues of the lignin still present in the
char although this effect was not always observed [65,66]. Here, the rhizosphere fungal
diversity was very low (Shannon indexes are all below 3) and a smaller Shannon index was
measured when the soil was supplemented only with char, whereas the highest index was
measured in the Char_MC-C_AMF treatment (Table S2). The main phyla present in all soils
were Ascomycota, Basidiomycota, Aphelidiomycota, and Chytridiomycota (Figure 2B),
representing, on average, more than 90% of the retrieved sequences. PCA analysis showed
that the grouping of the samples MC-C_AMF and Char_ MC-C_AMF were separated from
the others along the P2 axis and their variance was driven by changes in Ascomycota and
Basidiomycota (Figure 2D). Indeed, in these two treatments, the relative abundance of
Ascomycota and Basidiomycota decreased, a change that was accompanied by a parallel
increase in other fungi phyla still uncharacterized; an effect that was reported to be stronger
for the MC-C_AMF treatment.

2.3.2. Bacteria and Fungi in the Rhizosphere of Maize

The most represented phyla retrieved in the rhizosphere soil of maize resembled
those found for wheat (Figure 3A) and their relative abundance was also comparable. For
the bacterial population, PCA analysis did not show any groupings (Figure 3C) and the
Shannon and Chao-1 indices were all similar among the treatments (Table S2). The principal
component P1 explained 74.5% of the observed variation (Figure 3C), an effect correlated
mainly to Proteobacteria, whereas P2 accounted for 9.1% of the variation, an effect mostly
correlated to Verrucomicrobia and Actinobacteria. Verrucomicrobia are phylogenetically
heterogeneous Gram-negative bacteria, often described as inactive [67].

Actinobacteria have an important ecological role because they can degrade different
types of contaminants (i.e., pesticides, herbicides, and fungicides). The non-Streptomyces
Arthrobacter and Rhodococccus are among the most well-known genera [68–71]. The fungal
population displayed evident differences between wheat and maize. In maize, the main
fungal phyla were Ascomycota, Basidiomycota, Aphelidiomycota, and Chytridiomycota,
followed by Mucoromycota, which accounted for ~5% in the control and char samples
but dropped below 1% in all the other treatments (Figure 3B). Mucoromycota members
have been reported either as beneficial or as pathogenic depending on the order [72]. The
Mucoromycota present in the maize soil belong to the order of Mucorales, which have
been annotated as opportunistic pathogens. It is, therefore, interesting that all the microbial
treatments lowered the concentration of these fungi, with potential benefits to the overall
health status of the soil. This effect was registered by the Shannon index, which was the
highest in the control and char samples but was diminished in all the other treatments,
an effect connected to a decrease in the Mucoromycota population. The PCA analysis
showed that most of the data were grouped in a central cloud, whereas the values for
the control and char samples were more separated (Figure 3D). The latter was distributed
mainly along the P1 axis (P1 66% of Figure 3D) and their variability, as expected, depended
mainly on the Ascomycota and Mucoromycota populations. The classes mostly represented
within the fungal population were Sordariomycetes, Eurotiomycetes, Orbiliomycetes, Sac-
charomycetes, Mucororomycetes, and Agaromycetes (Figure S4). Mucoromycetes and
Orbiliomycetes were basically absent in the wheat rhizosphere soil. Mucoromycetes belong
to the phyla of Mucoroycota and they have been discussed above; Orbiliomycetes belong
to the Ascomycota phylum and are involved in the biological control of nematodes [73].
Within the analyzed samples, Orbiliomycetes were particularly abundant in maize soil
treated with AMF where they reached over 20% of abundance. Overall, fungi displayed
the largest variability with the different treatments, which agrees with the results reported
in other works [74–76].
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with different combinations of biofertilizers. (A) Relative abundance (based on OTUs) of the most
relevant bacterial phyla found in eight rhizospheric soils of maize analyzed in duplicate (1–2); the
colors are ordered from left to right according to the legend reported at the bottom of the panel;
(B) PCA analysis of the eight selected bacterial communities in the different maize soils analyzed.
(C) Relative abundance (based on OTUs) of the most relevant fungal phyla found in eight rhizospheric
soil of maize analyzed in duplicate (1–2); the colors are ordered from left to right according to the
legend reported at the bottom of the panel (D). PCA analysis of eight fungal communities in the
different maize samples analyzed. Each symbol (squares) represents one replicate and the colors
follow the legend reported at the top of the panel.

2.4. Gene Expression in Wheat and Maize Leaves (at Two Different Growth Stages)

The variations observed in the microbial population at the level of the rhizosphere in
wheat and maize offered the possibility of testing whether these treatments also determined
a new type of crosstalk between the microorganisms and plants in the soil.

This was analyzed at the level of gene expression measuring the transcriptional
variations that occur in genes involved in pathways essential for the plant. The selection
of these target genes also considered previous data on transcriptional profiling in maize
and wheat grown in a greenhouse and treated with biostimulants [4,77,78]. The rationale
for the selection reflected the following criteria: (i) gene expression specifically in leaves;
(ii) differential expression in response to biostimulants; and (iii) functions related to plant
essential pathways.

With these criteria, 14 genes were chosen all highly modulated in response to various
biostimulants in maize and wheat [4,77]. Our approach also included an interatomic
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analysis to evaluate the robustness of the chosen genes. The network of target genes was
composed of 53 nodes and 275 edges and it had a highly significant enrichment p-value
(<1.0 × 10−16). The average node degree, which is the average number of edges connecting
all the nodes in the network of each node, was 10.4 supporting the robustness of the chosen
genes (Figure S5).

The biological functions of the selected genes were photosynthesis, lipid metabolism,
glycolysis and gluconeogenesis, starch biosynthesis, amino acid metabolism, and secondary
metabolite biosynthesis (Table S3).

Wheat in greenhouse conditions is generally more responsive to biostimulants in the
early stages, tillering, and stem elongation, than in the later stages. After 60 days from the
inoculation of PGPM, the maximum increase in the shoot was up to +23% [53]. Therefore,
the gene expression analysis of leaves during the early stages of growth at 21 DAS and at
the end of the experiment at 60 DAS, was considered a good system for studying whether
these effects were also accompanied by molecular crosstalk.

2.4.1. Wheat

As shown in Figure 4A, all 14 genes were thought to display a modulation in re-
sponse to the different treatments and as a function of the developmental stages at 21
and 60 DAS. Moreover, the modulation by the various treatments was different from the
control conditions.

At 21 DAS, the genes that were upregulated in response to treatment with a microbial
consortium fell within four metabolic pathways: amino acid metabolism (pgd), glycol-
ysis/gluconeogenesis (pgk and pyrk), secondary metabolite biogenesis (P450), and lipid
metabolism (nmt1). Rhizosphere microbiotas seemed to play a key role in this context,
with the plant roots determining the crosstalk that extended its effects at the level of plant
growth and fitness, including the molecular effects at the levels of the genes involved in
the essential pathways [79].

At 60 DAS, similar sets of genes were modulated in response to the same treatments
compared to the control conditions. At this stage of growth, the treatment with a microbial
consortium determined the induction of the genes involved in the four metabolic pathways
essential for survival: lipid and starch metabolism (cer1, nmt1, sdq2, agpll1), photosynthesis
(oy1, psbp6, fad1), amino acid metabolism (aceS3, pgd), and glycolysis/gluconeogenesis
(pyrk and pgk).

PCA analysis was performed considering all plant traits for biomass and gene expres-
sion data (Figure S6). The information obtained through this approach underlined that the
treatments with MC-C used in combination with char, AMF, or both, were distributed along
the first principal component axis (PC 1) (29.44%) and were separated from all the other
treatments. Therefore, the use of functionalized char determined a different growth condi-
tion with respect to the control conditions and the conditions of the functionalized seeds.
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Figure 4. Heatmap showing the fold-change values in the 14 target genes analyzed in leaves at 21
and 60 DAS in response to the eight different treatments in wheat (A) and maize (B). For each gene,
the corresponding pathway is indicated. Each row represents a gene and each column represents
a treatment. Red and green correspond, respectively, to low and high expression levels. All values
were normalized with respect to the control, which is therefore not shown.

2.4.2. Maize

As shown in Figure 4B, all 14 genes were modulated in response to the different
treatments and as a function of the developmental stage at 21 and 60 DAS. Moreover, the
modulation by the various treatments was different from the control conditions.

At 21 DAS, the genes that were upregulated belonged to six metabolic pathways: amino
acid metabolism (pgd), starch metabolism (agpll1), photosynthesis (fad1, oy1), lipid metabolism
(cer1, nmt1), secondary metabolite biogenesis (P450, sm2), and glycolysis/gluconeogenesis (pgk,
pyrk). Plants treated with MC-B or C showed that the genes involved in the photosynthesis
pathway were strongly up-regulated compared to the control conditions. The condition
Char_ MC-C_ AMF determined a strong induction (FC > 4) of 9 genes (aceS3, agpll1, cer1,
fad1, nmt1, oy1, pgk, and pyrk) involved in different metabolic pathways. At 60 DAS, most
of the target genes were downregulated (Figure 4B). The treatment Char_MC-C_AMF
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determined the induction of the genes involved in the lipid metabolism, photosynthesis,
glycolysis/gluconeogenesis, and biogenesis of secondary metabolites. These data suggest
a bioprotective effect of the microbial consortia when combined with AMF and char [80].

PCA analysis (Figure S7) correlated to the plant biomass and transcriptional data; the
two growth conditions of char functionalized with both MC and AMF were grouped along
the first principal components axis PC1 (21.30%) with respect to the other conditions ana-
lyzed. Therefore, the use of functionalized char had a distinct growth and gene expression
effect compared to the control.

2.5. Correlation between Physiological and Molecular Data

The combination of char and microbial consortia was suggested in several instances
and with different argumentations, as char induces changes in microbial communities and
has structural features that favor microbial adhesion. Our results on the plant biomass
and other physiological parameters (Tables 1 and 2) were consistent with this idea. In
addition, the molecular data on soil microbiome and gene expression indicated the same
(Figures 1–4). Moreover, to better analyze the effectiveness of the treatments, the three
datasets were combined and ranked. The results obtained are reported in Table 3 and
they showed that in wheat, the treatments with the largest contribution to the cultures
were Char_MC-C, either with or without AMF, followed by Char_MC-B, either with or
without AMF, and, similarly, for maize, the best growing conditions were for Char_MC-C,
either with or without AMF, followed by Char_MC-B_AMF or AMF alone. This means that
considering all data and species (plants and microbes), these treatments produced more
positive results.

By considering the plant responses, physiological and gene expression data, and PCA
analysis specific to wheat and maize, the results obtained confirmed that the treatments
with Char_MC-C_AMF and Char_MC-B_AMF for wheat and maize, respectively, were
those that accounted for most of the variances observed (Figures S6 and S7).
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Table 3. Ranking the effectiveness of treatments in wheat and maize with a combination of physiological, metagenomic, and gene expression data. For each plant
and treatment condition, the average values of the different parameters have been ranked and scores have been assigned $. The scores have been summed over
all parameters (column “Total”) and averaged (column “Mean”) to allow comparison of conditions with an unequal number of parameters. Bold indicates the
treatment(s) with the highest ranking and italics indicate the treatment(s) with the lowest ranking.

WHEAT

Physiological Parameters * Metagenomic § Gene Expression #

Length (cm) FW (g) DW (g) Chlorophyll Content (SPAD) Shannon Index 21d 60d

Treatments Root Shoot Root Shoot Root Shoot Root Shoot Bacteria Fungi Up Up Total Mean

Control 10 7 8 4 8 1 3 7 5 2 4 1 1 61 4.7

Char 1 6 8 8 8 7 8 7 7 1 1 7 7 76 5.8

AMF 11 5 8 6 8 5 9 3 8 6 4 3 2 78 6

Char_AMF 4 3 2 4 8 9 5 12 3 6 2 5 4 67 5.2

MC-B 8 8 8 6 8 5 4 5 2 n.t. n.t. n.t. n.t. 54 6

MC-C 2 1 4 4 8 2 3 10 4 6 7 7 5 63 4.8

MC-B_AMF 7 2 1 4 8 5 11 11 1 n.t. n.t. n.t. n.t. 50 5.6

MC-C_AMF 3 5 9 8 8 7 1 5 6 6 7 8 8 81 6.2

Char_MC-B 6 9 11 12 10 12 7 2 10 n.t. n.t. n.t. n.t. 79 8.8

Char_MC-C 5 11 12 9 12 10 6 9 12 8 5 5 7 111 8.5

Char_MC-B_AMF 9 10 11 11 12 11 10 8 11 n.t. n.t. n.t. n.t. 93 10.3

Char_MC-C_AMF 12 12 4 10 10 8 12 1 9 7 8 3 4 100 7.7
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Table 3. Cont.

MAIZE

Physiological Parameters * Metagenomic § Gene Expression #

Length (cm) FW (g) DW (g) Chlorophyll Content (SPAD) Shannon Index 21d 60d

Treatments Root Shoot Root Shoot Root Shoot Root Shoot Bacteria Fungi Up Up Total Mean

Control 1 1 7 1 8 3 8 4 1 5 8 1 2 50 3.8

Char 2 7 2 4 8 3 4 1 4 2 7 7 8 59 4.5

AMF 6 4 7 6 4 6 3 6 2 7 5 6 7 69 5.3

Char_AMF 3 8 8 5 4 5 2 2 5 2 6 6 2 58 4.5

Char_MC-B 4 5 2 3 4 3 6 3 3 6 4 6 5 54 4.2

Char_MC-C 5 6 5 2 8 5 5 5 7 8 2 8 4 70 5.4

Char_MC-B_AMF 8 3 5 8 4 8 1 8 8 5 3 2 4 67 5.2

Char_MC-C_AMF 7 2 3 7 8 7 7 7 6 5 1 6 7 73 5.6

n.t. = not tested. $-In each column for each parameter, the greater values received the highest scores, corresponding to 12 or 8 according to the number of conditions tested. Other
values received lower scores based on their position in the ranking, down to a minimum score of 1. * Physiological parameters from Tables 1 and 2 have been ranked. § Metagenomic
measures from Table S2 have been ranked. # For gene expression, we have considered the number of genes upregulated in each condition at 21 and 60 DAS; here, a gene was considered
upregulated if its expression increased with a fold change ≥2.
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3. Materials and Methods
3.1. Strains and Growth Conditions

Two microbial consortia (MC-B and MC-C) were designed as part of the Horizon
2020 SIMBA project (Sustainable Innovation of Microbiome Applications in the Food
System), as previously described [40]. Each of them combined five strains with different
functional properties including PGPM; biocontrol strains; siderophore producers; strains
producing alpha-amylase, alpha-glucosidase, and iso-amylase; and strains involved in
N-fixation. MC-B was made up of A. vinelandii DSM 2289, R. aquatilis BB23/T4d, Bacillus
sp. BV84, B. amyloliquefaciens LMG 9814, and P. fluorescens DR54. MC-C was composed
of A. chroococcum LS132, B. amyloliquefaciens LMG 9814, P. fluorescens DR54, B. ambifaria
MCI 7, and R. aquatilis BB23/T4d. The strains were kept at −80 ◦C in 30% glycerol for
long-term storage.

Bacterial strains taken from cryopreserved pure cultures were streaked onto nutrient
agar (NA) plates and grown at 28 ◦C for 24–48 h, then, the cells were transferred to an LB
medium and incubated overnight in a thermostatic orbital shaker at 28 ◦C and 200 rpm,
except for A. vinelandii DSM 2289, which was grown for 72 h due to its lower growth
multiplication rate. Each culture was diluted at ratios of 1:2, 1:4, and 1:8, and the optical
measurements (OD600) were assessed to provide the correlation of OD600 with the colony-
forming units per mL (CFU mL−1) values that were obtained by serial dilution and plating
of microbial suspension on NA plates.

The AMF (R. intraradices) was purchased from MycAgro lab, Bretenière, France
(http://www.mycagrolab.com). The granular inoculum containing mineral solid parti-
cles (clay, zeolite), R. intraradices propagules (spores, hyphae pieces), and mycorrhizal
root pieces (10 propagules/ gcontaining a mix of spores, mycelium, and mycorrhizal root
pieces) [81] was added to soil at the concentration of 1.4% w/w.

3.2. Seed Coating and Liquid Delivery

Seeds of T. durum (cv Svevo) (kindly provided by Stuard farm, Parma, Italy) and of Z.
mays (DKC6587) (Dekalb Monsanto Company, St. Louis, MO, USA), uncoated, were surface-
sterilized using 10% sodium hypochlorite for 10 min and then subjected to three washes
with deionized water. A microbial culture volume corresponding to 108 CFU/mlwas used
for each strain. The consortium components were mixed at a 1:1:1:1:1 ratio and centrifuged
and the pellet was resuspended in 500 µL of sterile 0.9% NaCl and transferred to 1% (w/v)
sterile methyl cellulose. The seeds were incubated with this mix at 25 ◦C on a rotary shaker
at 70 rpm for 1 h to allow the bacterial consortium to adhere to the seeds; then, the excess
inoculum was removed, and the seeds were dried for 24 h before being sown. Control
seeds were submerged in 50 mL of 1% methyl cellulose alone. For liquid delivery, each
strain was mixed at a 1:1:1:1:1 ratio, each at a final concentration of 1 107 CFU/mlin a sterile
buffer (0.9% NaCl), and 5 mL were immediately supplemented to the plants.

3.3. Biochar Functionalization

Before being used as a carrier, biochar needs to be characterized [14]; thus, the neces-
sary amount was weighed (0.1% w/w was used) and then sterilized. Fresh pre-cultures of
each strain were prepared at a concentration of 107 CFU/mLin LB and combined with the
char (10 mL medium/ gof biochar). Cells were grown for 24 h at 28 ◦C with mild agitation;
the medium was then drained and the char was rinsed with sterile water and immedi-
ately mixed with soil [15,82]. To assess functionalization, the biochar was observed using
an AXIO Image Z2 (Zeiss, Jena, Germany) microscope and stained with Syto-9 (Thermo
Fisher Scientific Inc., Waltham, MA, USA) at a final concentration of 1 µM. The microbial
activity in the functionalized biochar was assessed by an XTT (3-Bis-(2-Methoxy-4-Nitro-5-
Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide) reduction assay as previously reported [83].

http://www.mycagrolab.com
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3.4. Experimental Setup in Greenhouse

Wheat and maize seeds were surface-sterilized using 10 % sodium hypochlorite for
1 h. Seeds were washed with sterilized dd H2O and sown in pots of 3 L using universal soil
(Vigorplant Italia s.r.l., Fombio Lodi, Italy) mixed with natural sand. The soil composition
was Baltic peat (21%), Irish peat (37%), volcanic pumice (13%), and superfine peat (29%);
the physicochemical characteristics were pH (H2O) = 6.0–7.0 and EC = 0.30–0.40 dS/m.
Plants were grown in a glasshouse at 25 ◦C during the day and 19 ◦C at night under
supplemental lighting providing a minimum of 150 mmol m−2 /sphotosynthetic photon
flux (14 hr day/10 hr night) for 60 days. Pots were disposed of in a fully randomized
scheme and their positions were periodically swapped; they were watered daily with
deionized water to maintain approximately 80% of the water-holding capacity of the soils.
No further microbial or chemical fertilization was provided throughout the experiment.

In total, twelve and eight conditions were considered for wheat and maize, respectively,
and six pots with three seeds per pot were prepared for each treatment. Specifically, for each
treatment, two plants were used to sample leaf tissues at 21 and 60 DAS for transcriptomic
analysis, whereas one plant per pot was used for physiological analyses.

At 15 DAS, for each pot containing an MC, a further liquid delivery was carried out
with each consortium (MC-B or MC-C) as described above. Both the wheat and maize
plants were harvested at 62 DAS.

3.5. Plant Growth Parameters

At 60 DAS, the chlorophyll content was measured in vivo with the SPAD-502 chloro-
phyll meter (Konica Minolta Business Solution Italia Spa, Milan, Italy), which was tested
on three expanded leaves per plant. Ten measures were taken along the entire length of
the leaf and the average was recorded. At 62 DAS, the plants were removed from the pots
and washed with water and the excess water was dried out with absorbent paper. For each
plant, the following growth parameters were measured on the shoots and roots: length, FW,
and DW. Lengths were measured with a ruler (cm), whereas the weights were established
with an analytical balance (g). Shoots and roots were oven-dried at 60 ◦C for 24 h to reach a
constant dry weight and the dry weight data were recorded. The dry biomass ratio was
calculated as the percentage of the dry weight with respect to the fresh weight for both
roots and shoots. All data are presented as mean ± SD and were analyzed by ANOVA
followed by Dunn’s post hoc test. A p value ≤ 0.05 was considered statistically significant.
Data were analyzed using the software Past v. 3.14 [84].

3.6. Metabarcoding Analysis of Rhizosphere Soil

Rhizosphere soil was collected from each plant by shaking the roots, removing loosely
adhered soil particles, and detaching the soil with a sterile chisel from different parts
of the root system. Five to six grams of fresh rhizosphere soil were collected for each
plant and stored at −80 ◦C until use. Genomic DNA was isolated from 250 mg of each
sample of rhizosphere soil collected at 62 DAS using NucleoSpin® Soil (Macherey-Nagel,
Duren, Germany) according to the manufacturer’s instructions. From each sample, 50 ng
of DNA was used to amplify the genes encoding 16S rRNA (V3-V4 region, primers: 16S f:
5′-TCGTCGGCAGCGTCAGATGTGTAAGAGACAGCCTACGGGNBGCASCAG-3´ and r:
5´-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACNVGGGTATCTAATC
C-3) as described in [85], and 18S (ITS2 region, 18S f: 5′-TCGTCGGCAGCGT
CAGATGTGTATAAGAGACAGGCATCGATGAAGAACGCAGC-3′ and r: 5′-GTCTCGTG
GGCTCGGAGATGTGTATAAGAGACAGTCCTCCGCTTATTGATATGC-3′) as reported
in [86]. DNAs were amplified by PCR using the following procedures: 3 min initial denat-
uration at 98 ◦C, followed by 30 cycles with 30 s denaturation at 98 ◦C, 30 s annealing at
55 ◦C, 1 min elongation at 72 ◦C, and a 10 min final extension at 72 ◦C. Next-generation
sequencing (NGS) was performed by BMR Genomics Srl (Padua, Italy) using standard
procedures [87,88].
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3.7. Target Genes Selection and Primers Design

Since the annotation for the maize genome is more advanced than for durum wheat,
the target gene selection started with maize using the Maize database (www.maizegdb.org
accessed on 12 April 2022, Assembly: Zm-B73-REFERENCE-NAM-5.0) and then the or-
thologous genes were identified for T. durum cv Svevo through a Blast search on the
Ensembl database (plants.ensembl.org, Assembly: GCA_900231445.1). A list of the selected
sequences is reported in Table S3. Primers were designed using Primer Express software v
2.00 (Applied Biosystems Inc., Foster City, CA, USA) and they are listed in Table S4. Each
primer pair utilized in quantitative reverse transcription PCR (RT-qtPCR) was tested to
assess its efficiency and specificity for the target genes of T. durum and Z. mays.

3.8. Expression Analysis by RT-qtPCR

Total RNA was isolated from 100 mg of leaf tissue using the RNeasy® Plant Mini
Kit (Qiagen GmbH, Hilden, Germany) according to the manufacturer’s instructions. The
RNA concentration was determined using a spectrophotometer VARIAN Cary 50 UV-
VIS (Agilent Technologies, USA). The total RNA (500 ng) was reverse-transcribed into
cDNA using a Quantitect®R Reverse Transcription kit (Qiagen, Germany) according to the
manufacturer’s instructions. The subsequent RT-qtPCR was based on 20 ng of a cDNA
template and SsoAdvancedTM Universal SYBR® Green Supermix 2X (Bio-Rad, Hercules,
CA, USA) with 250 nM of each forward and reverse primers (Table S4). The reaction
was conducted in a CFX96 Touch Real-Time PCR Detection System (Bio-Rad, USA) using
the following procedures: 95 ◦C for 5 min, followed by 40 cycles at 95 ◦C for 15 s, 60 ◦C
for 60 s, immediately followed by a melting curve analysis. The data were analyzed
with the 2−∆∆Ct method using 18S rRNA (18S) as a housekeeping gene and the control
samples (without char or MC) as the calibrators [89]. The RT-qtPCR data are presented as
the mean values calculated from three technical replicates and two biological replicates.
The ∆CT values were visualized through a heatmap using the Heatmapper software
(http://www.heatmapper.ca/ accessed on 12 June 2022). Ct values > 36 were considered
undetermined. Contamination was excluded by the analysis of a negative control. Genes
showing fold changes (FC) ≥ +2 or FC ≤ 0.5 were considered differentially expressed.

4. Conclusions

Biostimulants are natural products whose synthesis occurs without the inclusion of
any contaminants. The biofertilizer market is projected to grow at a rate of 14.08% from
2016 driven by factors such as an increase in demand for fertilizers due to the rise in global
food production and the development of new biofertilizer manufacturing technologies.
Therefore, biostimulants promise to become a new class of biotechnological fertilizers
capable of improving plant health and production but with more attention to sustainability
and a reduction in the use of classic fertilizers but with significant environmental benefits
(Figure S1). These benefits can span several crops from those for food production to
those for feed and industrial purposes. To enlarge the performance of biostimulants,
many delivery systems have been studied for cargo delivery with macromolecules such
as alginate, hydroxyapatite, or materials such as organic matter or biochar [44]. Biochar
produced from plant residues and agricultural wastes constitutes a good amendment that
improves important soil properties. Moreover, biochar increases the CO2 sinking capacity
of agricultural soils and can contribute to abating the presence of some contaminants [90].

The innovations in this paper as documented in the Results and Discussion section
were (i) the testing of complex MCs with variances with a vast literature and single strains;
(ii) the exploitation of char as a new delivery system for these MCs with a higher cargo
capacity than previously reported systems; (iii) the reference to general crosstalk between
soil and plants as a response to different treatments; (iv) a detailed bioinformatic and
statistical analysis of all metagenomics and gene expression data with some system biology
insights; and (v) the generation of an arbitrary evaluation matrix that includes all outputs
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with the purpose of generating a tool for researchers and practitioners for the possible use
of MCs and char for more sustainable cropping of wheat and maize.

The evaluation matrix in Table 3 indicates a high ranking when supplements were
used with char combined with MC (especially MC-C) and AMF for both crops. The PCA
analysis conducted on the only “plant” data (physiological and gene expression) largely
agrees with this and shows the major areas of the variances of these treatment conditions
(Figure 5).
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